Search results for "Mitochondrial membrane transport protein"
showing 10 items of 12 documents
Are Mitochondrial Fusion and Fission Impaired in Leukocytes of Type 2 Diabetic Patients?
2016
Mitochondrial fusion/fission alterations have been evaluated in different tissues of type 2 diabetic (T2D) patients. However, it is not known whether mitochondrial dynamics is disturbed in the leukocytes of T2D patients and whether glycemic control affects its regulation. Anthropometric and metabolic parameters in 91 T2D patients (48 with glycated hemoglobin [HbA1c]6.5% and 43 with HbA1c6.5%) were characteristic of the disease when compared with 78 control subjects. We observed increased reactive oxygen species production in leukocytes from diabetic patients, together with a reduced mitochondrial oxygen consumption rate, especially in poorly controlled patients. Mitochondrial fusion was red…
Analysis of thiamine transporter genes in sporadic beriberi
2014
Abstract Objective Thiamine or vitamin B 1 deficiency diminishes thiamine-dependent enzymatic activity, alters mitochondrial function, impairs oxidative metabolism, and causes selective neuronal death. We analyzed for the first time, the role of all known mutations within three specific thiamine carrier genes, SLC19 A2, SLC19 A3 , and SLC25 A19 , in a patient with atrophic beriberi, a multiorgan nutritional disease caused by thiamine deficiency. Methods A 44-year-old male alcoholic patient from Morocco developed massive bilateral leg edema, a subacute sensorimotor neuropathy, and incontinence. Despite normal vitamin B 1 serum levels, his clinical picture was rapidly reverted by high-dose in…
Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload
2012
AIMS: The optic atrophy 1 (OPA1) protein is an essential protein involved in the fusion of the mitochondrial inner membrane. Despite its high level of expression, the role of OPA1 in the heart is largely unknown. We investigated the role of this protein in Opa1(+/-) mice, having a 50% reduction in OPA1 protein expression in cardiac tissue. METHODS AND RESULTS: In mutant mice, cardiac function assessed by echocardiography was not significantly different from that of the Opa1(+/+). Electron and fluorescence microscopy revealed altered morphology of the Opa1(+/-) mice mitochondrial network; unexpectedly, mitochondria were larger with the presence of clusters of fused mitochondria and altered c…
Ex Vivo Treatment with a Polyphenol-Enriched Cocoa Extract Ameliorates Myocardial Infarct and Postischemic Mitochondrial Injury in Normotensive and H…
2016
Our objective was to determine the effects of a polyphenol-enriched cocoa extract (PCE) on myocardial postischemic alterations in normotensive (Wistar rats, W) and spontaneously hypertensive rats (SHR). Isolated hearts were submitted to 110 min of perfusion or 20 min stabilization, 30 min global ischemia, and 60 min reperfusion (R). Other hearts were treated with PCE at the onset of R. Infarct size, the reduced glutathione (GSH), and the expression of phospho-Akt, P-GSK-3β, and P-eNOS were assessed. In isolated mitochondria, the Ca2+-mediated response of mitochondrial permeability transition pore (mPTP), membrane potential (δψm), and superoxide production were determined. PCE decreased infa…
Investigating and re-evaluating the role of glycogen synthase kinase 3 beta kinase as a molecular target for cardioprotection by using novel pharmaco…
2019
Aims Glycogen synthase kinase 3 beta (GSK3β) link with the mitochondrial Permeability Transition Pore (mPTP) in cardioprotection is debated. We investigated the role of GSK3β in ischaemia (I)/reperfusion (R) injury using pharmacological tools. Methods and results Infarct size using the GSK3β inhibitor BIO (6-bromoindirubin-3'-oxime) and several novel analogues (MLS2776-MLS2779) was determined in anaesthetized rabbits and mice. In myocardial tissue GSK3β inhibition and the specificity of the compounds was tested. The mechanism of protection focused on autophagy-related proteins. GSK3β localization was determined in subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) isolated from Lang…
Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture
2012
Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10 -8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral…
Controlled reperfusion after hypothermic heart preservation inhibits mitochondrial permeability transition-pore opening and enhances functional recov…
2006
We investigated whether low-pressure reperfusion may attenuate postischemic contractile dysfunction, limits necrosis and apoptosis after a prolonged hypothermic ischemia, and inhibits mitochondrial permeability transition-pore (MPTP) opening. Isolated rats hearts ( n = 72) were exposed to 8 h of cold ischemia and assigned to the following groups: 1) reperfusion with low pressure (LP = 70 cmH2O) and 2) reperfusion with normal pressure (NP = 100 cmH2O). Cardiac function was assessed during reperfusion using the Langendorff model. Mitochondria were isolated, and the Ca2+resistance capacity (CRC) of the MPTP was determined. Malondialdehyde (MDA) production, caspase-3 activity, and cytochrome c …
Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species
2010
This review highlights the important role of redox signaling between mitochondria and NADPH oxidases. Besides the definition and general importance of redox signaling, the cross-talk between mitochondrial and Nox-derived reactive oxygen species (ROS) is discussed on the basis of 4 different examples. In the first model, angiotensin-II is discussed as a trigger for NADPH oxidase activation with subsequent ROS-dependent opening of mitochondrial ATP-sensitive potassium channels leading to depolarization of mitochondrial membrane potential followed by mitochondrial ROS formation and respiratory dysfunction. This concept was supported by observations that ethidium bromide-induced mitochondrial d…
Nitroglycerine causes mitochondrial reactive oxygen species production: In vitro mechanistic insights
2007
Background Nitroglycerine (GTN) is an organic nitrate that has been used for more than 100 years. Despite its widespread clinical use, several aspects of the pharmacology of GTN remain elusive. In a recent study, the authors of the present study showed that GTN causes opening of the mitochondrial permeability transition pore (mPTP) and mitochondrial production of reactive oxygen species (ROS). Objective In the present study, it was tested whether GTN-induced ROS production depends on mitochondrial potassium ATP-dependent channel or mPTP opening, and/or GTN biotransformation. Methods and results Isolated rat heart mitochondria were incubated with succinate (a substrate for complex II) and GT…
Permeabilization of the Outer Mitochondrial Membrane by Bcl-2 Proteins
2010
The proteins of the Bcl-2 family regulate the release of the apoptotic factors from mitochondria during apoptosis, a key event in physiological cell death. Although their molecular mechanisms remain unclear, the Bcl-2 proteins have been proposed to directly control the permeability of the outer mitochondrial membrane by pore formation. Indeed, they share structural features with the pore forming domains of some bacterial toxins and they can give rise to proteolipidic pores in model membranes. The complex level of regulation needed to decide the fate of the cell is achieved by an intricate interaction network between different members of the family. Current models consider multiple parallel …